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FOREWORD

This work was performed for and funded by the Office of Naval Technology as
part of the Explosives Project within the Explosives and Undersea Warheads
Technology Block Program PE602314N. The results and conclusions in this report
will be of interest to those seeking information onpressure gauges for use in
underwater free field. experiments, on structures, in explosive tests, and in explosive
flyer plate designs.

Dr. R. Doherty and L. Roslund have given funding support for this work. M,
Frankel (Defense Nuclear Agency) funde e research on the low inductance gauge
repcrted in Appendix A. Gerrit Sutherland provided the manganin gauge record for
the experiment on PBXW-123. E. R. Lemar and Gerrit Sutherland conducted one-
dimensional code calculations for the explosive flyer plate experiment.
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ABSTRACT

A polyvinylidene fluoride (PVDF) piezoelectric pressure transducer is described
in this report. Techniques for its use and experimental applications are described in
detail.
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CHAPTER 1

INTRODUCTION

This report details the application of polyvinylidene fluoride (PVDF) pressure
transducers to shock wave ana explosives research at the White Oak Laboratory of
the Naval Surface Warfare Center (NAVSWC). The work discussed here used the
well characterized PVDF film material developed by Francois Bauer of the Institut
de Reserches in Saint Louis, France (ISL). A large body of publications exists
detailing the development and manufacture of this PVDF material. 1.2 This
standardized stress gauge has been shown to respond to shock loading over a large
stress range (0 to 60 GPa). It can provide a direct measure of stress-rate over time
with high sensitivity. Bauer reported in 1981 that strong and well characterized 3

electrical signals are obtained from shock-compressed PVDF and its co-polymers.3

Since then, much work has been performed to develop high quality, reproducible
PVDF film and a standardized PVDF stress gauge element. The transducers used in
this study were manufactured by Metravib* and supplied by Ktech.** Chapter 2
briefly describes these PVDF transducers, their manufacture, and how they work. A
very last response PVDF gauge has also been designed and tested at NAVSWC. This

•auge was poled using the "Bauer" process but had a very low parasitic inductance;
i.e., 3 nH compared to 25 nH for the standardized gauge. The low inductansce should
facilitate the measurement of very short rise time shocks. This NAVSWC design is
described in Appendix A.

When using any fast response piezoelectric stress gauge, special attention must
be given to measuring circuits and recording equipment. Chapter 3 covers gauge
circuits and signal conditioning techniques.

We have used the standardized "Bauer" PVDF gauges in several research
projects at NAVSWC. Chapter 4 discusses these experiments and results,
Experiments will be described where underwater shock measuren .nts were made
close to a detonating Pentolite charge; the stress was measured ai Lhe end of a
cylindrical charge of PBXW-123; and the stress induced in a polyinethylmathacrylate
(PMMA) plate by the impact of an aluminum flyer plate was measured.

* Motravib, CDS, 64 Chomin Des Mouilles, BP 182,69132 Ecully France.
Mu Ktch Corporation, 901 Pennsylvania Avenue, NE, Albuquerque, NM 87110.
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CHAPTER 2

PVDF TRANSDUCER EIEMENTS

THE PVDF POLYMER

PVDF Gauge Manufacture

The degree of piezoelectric response of a PVDF film depends upon the processes
used to manufacture it. As molten PVDF is extruded and cooled a nonpolar "alpha
phase" material is produced. Alpha phase PVDF consists of randomly arranged
chains of carbon atoms with a pair of hydrogen atoms attached to every other carbon
atom. A pair of fluorine atoms is attached to the other carbon atoms. Mechanical
stretching of the film during extrusion generates a polar, so-called beta phase PVDF,
with the carbon chains aligned in parallel strips and planes. The hydrogen and
fluorine pairs are randomly located around the axis of the carbon chains. It is the
beta phase material that is used to make piezoelectric film sensors.

After stretching, the film is metallized on both sides in a desired electrode
pattern with a region of overlap defined as the active area of the sensor. The active
area is then subjected to a large electric field which permanently rotates the
hydrogen and fluorine pairs around the chain, opposing one another. The result is a
highly sensitive, thin film stress gauge.

THE STAN DARDIZED PVDF H1tOCK TRANSDUCER ELEMENT

Stunndardization

Through a long-term collaborative effort between the lSL and Sandia National
Laboratory, Albuquerque, a set of specific processes was developed for the production
and characterization of high quality precision PVDF sensors for shock research.2

At Rhbne-Poulenc, in France, it was found that biaxially stretching alpha phase
film produces the highest quality cf beta phase PVDF. Rhone-Poulenc supplies all
the PVDF film used in production of the standardized shock transducer element.

Francois Bauer of ISL has developed and patented a technique of polarizing this
biaxially stretched PVDIF that maximizes the piezoelectric output and produces
reproducible values of remnant pularization.4  Iis process involves using a cyclic,
500 MV/m eluctric field to rotate the hydrogen and fluorine pairs and to dissipate
local space charges.

2-1
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The result of this effurt was the development of a standardized PVDF shock
transducer clement. Figure 2-1 is a representation of the standardized element. The
PVDF film is 25 pm thick biaxially stretched PVDF with gold-over-platinum
sputtered electrodes. The active area is poled using the Bauer process to a remnant
polarization of 9 pC/cm 2 .

Characterization

As part of a cooperative effort with ISL, Sandia National Laboratory has
performed a characterization study on the standardized PVDF shock element.6
Through a large number of precision planar impact experiments, a shock response
calibration relating piezoelectric charge versus stress has been produced.
Equation (2-1) is Graham, et al.'s polynomial fit to the shock data where a is stress in
GPa and q is charge density in pC/cm 2.

.010 to .337 GPa:

a = 2.86x 10-5 + 4.415 x 10-Iq + 1.027q 2 - 5.41 x 10-1q3

.337 to 2.369 GPa:

a = -5.47 x 10-3 + 6.42 x 10-Iq + 3.61 x 10-1 q2 - 7.49 x 10-3q 3  (2-1)

2.372 to 10 GPa:

a = -7.43 x 10-3 + 6.25 x 10-1q + 5.20 x 10- 1q2 - 2.31 x 10- 1q3 +
9.87 x 10-2q4 - 1.12 x 10-q 6

The results show a smooth curve from 10 MPa through 10 GPa which is
independent of loading path. This curve is given in Figure 2-2. Response data above
10 GPa has been recently released, including results at pressures approaching
50 GPa.7

Performance Characteristics

Sensitivity. Because of its high sensitivity to changes in stress, PVDF output

has a ijig-' sIgn-a-l-to-noise ratio, making the use of an external amplifier unnecessary.
For example, underwater shock experiments are often electrically noisy because of
capacitive coupling of the gauge and water, charge polarization, etc.; however, when
circuitry is chosen carefully, PVDF transducers yield excellent underwater records.

Wide Pressure Band. PVDF is capable of measuring stress within a wide band
of magnitudes. Pressures less than 1 MPa and greater than 10 GPa can be measured.

Short Shock Transit Time. The PVDF sensors are so thin that, for many
experiments, it is virtually "invisible" to the incident shock pulse. This feature is
especially true for underwater experiments where shock rise times are long.

Rate of Change ofStress. PVDF is the only stress gauge that can directly
rnc, sure the time derivative-of stress.

2-2



NA VS WO TR 9 1-506

--- ACTIVE AREA

SPUTTERED GOLD
ELECTRODES

S7 mm

~-25 pim PVDF FILM

lFIGUlU,, 2-l. II1 FESTAN 1)ARDIZED ISIJIAIJ Ell I'VDF TRANSDUC!EM E~lFl,,Ml'NI'

2-3



NAVSWC TR 91-506

10!I

S. .. .................. 1 ....................... ............ ! ............. .. ..... .t . ...... / I ......... ........
|8- ISLIBAUERP'¶DF I.i. . S.. . . .. .•............. .. .. . .. . .. . . .. . ................. . ............... .. . .. ... .... .. ... ... ..

............. ....... ....... ................ , .... ............ ....... .......... .. .. .............. .. ..... .... . ... .. . .1~~ ~...... ......I I ! i6 ! / I I.6 . .. ............... . . . ... • . ................ . . . . . . . 4 ................. .. . . .. . ., .. ....... .................. .F. . . . .. . . . . ...

... .... ......... .
I I I i • • y . . . . . ,... .... ....... ............. ! ............... ............... 4,.......... .. , 0... .. 3

I ................. ............... ...... .. ....... .... ..... ......
4 ... .. ................. 0.................. T..............

I-......... ...i ............ i . ...... .... ............. . . . ... . . 9I~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~. ., ...... " ................... .... •........ ..... o ..........
2 . ............ I I ........ . I. ...

- 0...... .

0 0.1 O0 0.3 04

0 1 2 3 4 5

FIGURE 2-2. SHOCK RESPONSE CHARACTERIZATION DATA FOR ISL/BAUER PVDF

2-4



NAVSWC TR 91-506

Potential Problems. The use of PVDF is not problem-free. In common with all
stress gauges, PVDF is sensitive to lateral strains which can perturb stress-time
data. However, some of our underwater work reported here suggests that these
strain effects may not greatly influence peak stress measurements, though more
study is needed to obtain conclusive information.

PVDF is sensitive to large thermal gradients, which can depolarize the
hydrogen-fluorine pairs resulting in lower charge output and erroneous stress data.
Applying thermal shields of copper, aluminum, or gold coatings has been shown to
eliminate this effect.'

2-5
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CHAPTER 3

TECHNIQUES

PVDF gauge output is sensitive to changes in stress, a; i.e., the rate of change of
charge output, d /dt, is related to the rate of change of stress, do/dt. The charge, Q,
produced by the element is a measure of the stress in the element. At NAVSWC, two
methods of operation have been employed for PVDF transducers. In one method, the
charge generated by the gauge element is measured to get a direct record of the stress
input to the gauge element. This mode of'operation is called the charge mode and is
best suited for use in experiments measuring shock pulses with long rise times. The
second technique measures the rate of charge production, which yields data
proportional to stress rate, do/dt. This technique is known as the current mode and is
best used to measure shocks with short rise times (tenths of Os). The choice of which
technique to use depends upon the desired measurement and the conditions under
which the measurement is being made.

CHARGE MODE OPERATION

Circuit Design

A charge measurement is achieved by monitoring the voltage across a capacitor
wired in parallel with the PVDF element as shown in Figure 3-1. The value of the
capacitor, C, is adjusted to suit the experiment being performed. The work in this
report used a 25 mm 2 active area sensor with a 100 nF capacitor across it and a 50 Q
resistor between the capacitor and the signal cable. The 50 fl resistor matches the
circuit to the 50 •1 impedance cable so that the capacitance of the cable can be ignored
when analyzing the data. To properly use this matching technique, the circuit must
be kept close to the PVDF; i.e., between the element and the cable. If the integrating
circuit is attached far from the gauge, then the cable reactance must be accounted for
in the corrections discussed below.

The charge mode circuit described above is, in effect, a low pass filter. If the
shock pulse is a high frequency event; i.e., if it has a very short rise time, then the
charge mode circuit may yield erroneous data if this frequency exceeds the
bandwidth of the circuit. In our work, the rise time of our pressure pulse was fairly
long, approximately 100 ns (3.5 MHz equivalent bandwidth). The capacitor value"
was chosen so that the resonant frequency of the circuit was well above 3.5 MHz. One
benefit of the filtering is that high frequency noise is smoothed out. This effect is
desirabl!' in high noise environments such as underwater field tests.

Data Reduction

When the element is stressed, charge is generated on the two electrodes. The
change in charge, dQ/dt, becomes the current, ic, flowing to the capacitor, C, in

,-1
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Figure 3-1. As the capacitor is charged, the oscilloscope monitors the voltage across
it. This measured voltage is representative of the charge produced by the PVDF.
Since the charge produced is a measure of the stress on the PVDF element,
Equation (2-1), then the voltage-time record from a charge mode transducer is
representative of the stress-time profile.

The charge on the capacitor is related to the measured voltage by

Q(t) = Cx V(t) (3-1)

where Q is the charge in Coulombs, C is the capacitance in Farads, and V is the
voltage in volts. In order to anply Equation (2-1) to obtain stress in GPa, the charge
mustbe expressed in units of pC/cmr Simple arithmetic gives:

q(t) = Cx V() (3-2)
A

where q is the charge density in pC/cm 2 if the area A of the PVDF element is in cm 2 .
This charge density is then used in Equation (2-1) to calculate the stress in the
PVDF.

Sijgnal Prediction

In order to properly set oscilloscope voltage sensitivities, it is necessary to have
some knowledge of the peak signal that is expected. For experiments using charge
mode PVDF transducers, signal estimates are made by using a prediction of the peak
stress magnitude. Substituting this value into the stress-charge calibration,
Equation (2-1), the expected peak charge output from the PVDF can be calculated.
Knowing the charge mode circuit parameters and solving Equation (3-2) for V(t), an
estimate of the peak voltage record can be made. If desired, the value of the shunt
capacitor, C, can then be changed to adjust the circuit output to suit experimenter
preference. This method makes setting oscilloscope sensitivities simple in
experiments where only rough estimates of peak pressure are available.

"Direct" Stress Measurement

Since the signal output from the transducer is a function of the stress input, the
scope record is a fair representation of the structure of the stress profile even before
performing data analysis. Any obvious deviation from the expected pulse structure
can be seen immediately.

CURRENT MODE OPERATION

Circuit Design

The current mode technique takes full advantage of the stress rate sensitivity of
PVDF. A small resistor, r, is attached in parallel with the PVDF element as shown in
Figure 3-2. The current through the resistor is measured. Since the current is
defined as the rate of change of charge, dQ/dt, and the charge output Q is a function of
gauge stress a, the output from a current mode PVDF transducer is a measure of

3-3
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stress rate, do/dt. To obtain a stress measurement, the data must then be
numerically integrated. Since the output from current mode PVDF transducers
represents the rate of change of stress during a shock pulse, they are very sensitive to
the structure of the shock profile.

Data Reduction

The oscilloscope measures the voltage V(t) across the shunt resistor, which is
related to the current i(t) by Ohm's Law. For the circuit shown in Figure 3-2,
analysis yields:

r(R + Z) ZV(4) = w~) X
r+Rm +z RM+Z

which simplifies to:

rZ
V(t) = WQ) (3-3)

r+R +Z

where r is the shunt resistance, Rm is the matching resistor, and Z is the input

impedance of the oscilloscope.

Substituting:

dQ(t)

dt

into Equation (3-3), and solving for dQ(t) gives:

r4R +Z
dQ(t) = M VQ) di (3-4)

rZ

Integrating Equation (3-4) and dividing by the active area, A, in cm2 , gives the
charge density:

r +.1?m+Z

q(t) M V) dt (3-5)rZA I

which is then substituted into Equation (2-1) to obtain stress.

In our work, the shunt was typically 1 to 3 Q, with Rm = 50 0 to match the
transducer circuit to the 50 fl coaxial cable and the 50 Q oscilloscope impedance.

2.5
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Signal Prediction

To predict the peak voltage magnitude at the oscilloscope, estimates of the pulse
rise time, T, and of the peak stress are necessary. Recall that:

Wt) dQ(t)
dt

Assuming a steady rate of change of charge during the pulse rise, the PVDF element
produces a.quantity of charge, Q, so therefore the current through the shunt
resistance is:

Jiruq (3-6)

Furthermore, we know that the charge density is the charge per unit of area, or:

Q
A

A value for q is obtained from the calibration data, Equation (2- 1).

Returning to Equation (3-3) and substituting the above, we obtain an expression for
estimating oscilloscope voltage as a function of pulse rise time, peak charge, and
circuit parameters:

qA rZ
m r÷R +Z

m

DigitizerSensitivit Care must be taken when using digitizing equipment in
an experiment using DF in the current mode. If the current mode ?VDFoutput is
recorded at a low digitizer sensitivity, the data can be distorted. At low sensitivities
there is a greater voltage step between each of the levels in the analog-to-digital
(A/D) converter of the digitizers compared to the incoming peak voltage. Therefore, it
takes a larger voltage change in the incoming data to effect a change of one voltage
step in the digitizer. Gradual rises or falls in the data can become stair steps as the
digitizer jumps from voltage level to voltage level. Also, small voltage changes in the
incoming data may not even be recorded if they are not large enough to initiate a
change between levels. Because of the large voltage steps, relatively small signal
changes can result in ei roneous data if the digitizer was at the threshold between two
voltage levels. Figure 3-3 demonstrates some of these problems. The integrated
records shown here are signals from the same PVDF gauge operating in the current
mode. Note how the lower sensitivity record (± 20 V) lacks the structure following
the peak shown in the higher sensitivity trace (± 4 V).

3-6
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CHAPTER 4

EXPERIMENTAL APPLICATIONS OF PVDF SHOCK TRANSDUCERS

This chapter will describe several experiments performed at NAVSWC White
Oak. General descriptions of the experimental arrangements will be given, followed
by a brief discussion of the results. Chapter 5 will cover the results in more detail.

STRESS MEASUREMENTS AT A WATER/SOLID INTERFACE

The shock conditions at the interface of two materials of different shock
impedance; e.g., at a fluid/solid interface,give rise to measurement difficulties.
PVDF pressure transducers mounted on the solid surface are exposed to nonuniaxial
stress and strain, including such effects as radial expansion. Earlier work has
demonstrated that the PVDF polymer response is affected by radial expansion
yielding erroneous stress data.8 In an effort to quantify and minimize these effects,
we have performed preliminary work to study the response of a surface-mounted
PVDF transducer subjected to underwater shocks.

A tandem PVDF transducer configuration, consisting of two PVDF gauges
mounted to either side of a thin plate, was studied in underwater shock wave
experiments.9 In this arrangement, one transducer element produces charge due to
both the stress and the strain in the plate. The other gauge is positioned such that its
response is essentially due only to the strain in the gauge. The signals from each
transducer are compared to obtain the stress, assuming the strain effects are
adequately handled by this approach. A numerical approach is used to minimize the
effect of circuit inconsistencies.

Experimental Arrangement

Water Gav Arrangement. The experiment used a water shock attenuator, or
gap, arrangement to deliver a shock of prescribed magnitude to a target plate. This
gap arrangement, shown in Figure 4-1, has been adapted from one used at the Naval
Weapons Center (NWC), China Lake, and has been pressure-distance calibrated at
NAVSWC.'0 ,11 The calibration is given in Figure 4.2.

An explosive donor, a 50.8 mm x 50.8 mm cylindrical Pentolite (50/50
PETNf/'NT) charge, was detonated underwater at 50 mm from the target. The
calibration gave the pressure in the water before the shock entered the plate and a
simple impedance mismatch calculation was performed to estimate the input stress
to the target.

Target/Aguarium Assembly. Two PVDF elements were bonded to either side of
a 150 mm diameter target plate with a 10:3 mixture of Dow Epoxy Resin 332 and
Dexter-Hysol hardener 3561. At room temperature, this mixture has a very low

4.1
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viscosity, and with light pressure applied, a bond thickness on the order of 3 pm can
be obtained. The plate material was 6.35 nun thick PMMA. A 140 mm inner
diameter PMMA cylinder bonded to the plate with silicone rubber served as an
aquarium. A thin film of mylar was applied over the top transducer to form a
watertight seal. The cylinder was filled with fresh water.

Transducer Configuration. The PVDF shock transducer was composed of two
25 rmm PVDF rshock transducer elements in a tandem arrangement composed. The
first transducer element was placed at the water/plate interface. The second
transducer element was positioned on the opposite side at the plate/air interface. The
idea was to obtain a record of a combination of stress and nonaxial strain from the
first transducer element and a record of the nonaxial strain effects alone from the
second PVDF element. The stress at the plate/air interface cancels on reflection, so
data from a transducer mounted here is representative of the nonaxial strain in the
plate with no stress contribution after a few reverberations in the gauge as long as
the gauge remains against the plate. Since PVDF has a shock impedance slightly
higher than that of PMMA, the plate/transducer junction remains intact during the
experiment.

The PVDF transducers were used in the charge mode circuit shown
schematically in Figure 3-1. The details of the circuit assembly are given Figure 4-3.
The 100 nF capacitor was soldered to a short length of flexible circuit board which
was then attached to the gauge element through two small copper tabs soldered to the
PVDF with low temperature indium-bismuth solder.

Recall that the charge produced is proportional to the stress input to the
transducer according to Equation (2-1). For this work, the stress input o was easier to
predict than the stress rise time. With the peak stress approximately known, the
signal peaks were more accurately estimated, which simplified setting oscilloscope
sensitivities. The stress rise time, though not exactly known, was expected to be on
the order of 100 ns, so the fast response of the current mode was not needed. Also,
wide band electrical noise can be genierated due to shock induced polarization of the
water, and transducers are more susceptible to this noise in current mode as opposed
to charge mode. For these reasons, the charge mode configuration was chosen over
the current mode.

Output Estimates. When detonated, the Pentolite donor introduces an
approximately 11 GPa shock to the water. After traveling the 50 mm to the plate, the
shock decays to a peak pressure of 2.1 GPa in the water. As the shock enters the
plate, the pressure rises due to the impedance mismatch. Figure 4-4 is a plot of the
Hugoniots for water, PMMA, and aluminum, and demonstrates the graphical
technique for performingan impedance mismatch calculation where shock
attenuation is ignored. The aluminum Hugoniot is shown because some shots were
performed with a 3.17 mm thick 6061-T6 aluminum plate in place of the PMMA. A
2.5 GPa peak was predicted for the PMMA and 4.3 GPa for the aluminum. Thesestress values were verified with computer code calculations. A pying E quation (2-1
to these stress values yielded charge estimates, which were use to calculate output
voltages.

Results

PMMA Plate. The results of one experiment are shown in Figure 4 -5. After
data reduction, the measured peak stress at the water/PMMA interface agrees with

4-4
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the predicted value of 2.5 GPa. At about 3 ps the rarefaction arrives from the
PMMA/air interface and interferes with the input pulse measurement. The
calculated reflected stress in the PMMA due to the water/PMMA interface was
approximately 100 MPa. However, the signal measured is negative, possibly due to a
combination of strain effects and shock decay.

The record from the transducer at the PMMA/air interface shows a different
structure. The initial ringing in the trace may be shock-induced electrical noise
generated by the PMMA. It is present for over 200 ns which is too long to be shock
ring-up of the PVDF alone. The ringing is followed by a slow rise to an
approximately 1 V plateau which is stable for the remainder of the record. Since the
PVDF is closely matched to the PMMA, spalling of the transducer element from the
plate does ,ot occur. Therefore, this record is a result of nonaxial strain in the plate.

Aluminum Plate. Figure 4-6 shows data recorded from a tranrducer at the
water/aluminum interface. After data reduction the stress record was obtained. It is
plotted with a record from another experiment, in Figure 4-7. The agreement

etween the two records is excellent. Both records show peaks near the predicted
4.3 GPa with rise times of 110 to 120 ns. The shock "ring-up" of the transducer
package is evident on the leading edge of the records and was complete in
approximately 40 ns.

The peak is followed by a stepped decay. The steps occur at approximately
1.1 ps intervals, which is twice the shock transit time through the 3 mnm plate. Each
step is the arrival of a reflected pulse from the aluminum/air interface.

A gauge mounted at the aluminum/air interface would have spalled off almost
immediately upon shock arrival because of PVDF's lower shock impedance.
Therefore, no results could be obtained for nonaxial strain of the aluminum plate.

IMPULSE MEASUREMENT OF PBXW-123

An experiment was performed to measure the impulse at the end of a reacting
cyliiider of explosive using both PVDF and manganin pressure gauges. This
instrumentation was added to an experiment involving a streak camera
measurement of the detonation velocity of a cylindrical charge of PBXW-l 23,
PBXW-123 is an underwater explosive with a large failure diameter. The PVDF
gauge records show that the charge di, ,ot detonate. This experiment represents our
first attempt to measure stress in a reacting explosive with PVDF gauges. Although
the explosive itself failed to perform in this configuration, the PVDF transducers
obtained useful data. One goal of this experiment was to compare the PVDF stress
records obtained with the chrarge and current mode meLhods.

Experimental Arrangement

G.neral. As an addition to a PBXW-123 detonation velocity measurement
experiment, an instrumented Teflon" gauge block was attached to the end of the
charge. Teflon was chosen because it has a shock impedance which closely matches
that of the explosive.
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Two 25pm thick, 5 mm, x 5 mm active area PVDF transducer elements were
epoxied to the Teflon. A Dynasen* gauge package consisting of one manganin gauge
sandwiched between thin sheets of Teflon was epoxied in front of the PVDF gauges.
The manganin gauge was positioned so that shock reflections from the manganin did
not affect the PVDF records. The PVDF elements were each approximately 8 mm off
center. The block was then mounted to the end of a 12.5 cm diameter, 50 cm long
PBXW-123 using silicone vacuum grease between the surfaces to eliminate any air
gaps. A bead of silicon RTV around the outside of the interface secured the block to
the char e, and the whole assembly was supported in a cradle. This arrangement is
schematically shown in Figure 4-8.

Transducer Confi.uration. One transducer was operated in the charge mode;
the second gauge was used in the current mode. The circuits used for the transducers
were the same as those discussed in Chapter 3. The charge mode gauge used a 100 nF
shunt capacitor, and the current mode gauge used a 3 P. shunt resistor. The record
from the current mode gauge was numerically integrated to obtain stress.

Output Estimates. A 12 to 15 GPa peak stress with an approximately 100 ns
rise time was estimated if the explosive detonated. Using the methods outlined in
Chapter 3, peak output estimates were made, giving a peak of approximately 10 V
from the charge mode gauge and 14 V for the current mode gauge.

Results

As mentioned above, the explosive failed to detonate. Htowever, the PVDF
transducers and manganin gauge produced stress data. The records fro i ithe PVDF
transducers are shown in Figure 4-9. Recall that the current mode gauge output is a
measure of stress rate over time; thus, the peaks and valleys reflect changes in slope
in the stress-time record.

It is important to note here that these records have been time-shifted to appear
coincident so that direct comparison is easier. The current mode record actually
began 200 ns after the charge mode record, probably due to large wave curvature in
the PBXW-123. (High w-ve curvature was measured in an experiment with a
10.2 cm diameter charge.) Also, the gauges were not positioned in the exact same
place.

After the appropriate corrections, (e.g., scaling, necessary integration,
application of the stress calibration), the stress records were obtained. The results
are given in Figure 4-10 along with the manganin gauge data Tphe charge mode
record gives a peak stress of 3.0 GPa which decays to 2.6 GPa after about 3 ps and
then remains stable. The integrated current mode data shows a 2.5 GPa peak
followed by a decay to 2.3 GPa. The manganin gauge record shows a peak stress of
2.8 GPa. These low stress magnitudes certainly indicate an absence of detonation.
The long sustained plateau starting at about 2.5 ps is probably due to gauge
stretching and relief wave arrival. These effects were expected to occur after a few
microseconds.

This experiment represents our first attempt to use PVI)F pressure transducers
to measure the stress-time profile in a reacting Navy explosive. Though the
experiment was not designed to measure pressure in a failing detonation wave, thu

*)ynasen, Inc., 20 Arnold Place, Goleta, CA 93117.
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PVDF transducers did produce useful data. The agreement of the two PVDF records
and the PVDF data with the manganin gauge data is good.

FLYER PLATE PERFORMANCE EVALUATION

An explosively driven aluminum flyer plate was designed for use as a shock
input device for a series of experiments. The system was designed to yield flyer
velocities above 2.5 ml/.ps. A potential problem with an explosively driven flyer
plate is that it way split into thin plane layers (i.e., spall). Multiple plates impacting
the target will result in a multi-peaked shock instead of the desired flat top shock.
Our explosively driven flyer design is shown in Figure 4-11 and is similar to that
used by Erkman in his work on shock wave attenuation in aluminum.12 Erkman
showed that a thin layer of DetasheetO explosive placed between the metal driver
plate and the metal flyer plate reduced spalling of the flyer plate. However, a plane
one-dimensional hydrocode calculation showed that our design would spall.12
However, the equations of state for Detasheet and the driver explosive (PBXN-1 10)
were not accurately known, resulting in uncertainty in the calculation's prediction of
spall. In order to evaluate its performance, a PMMA targeA plate was instrumented
with PVDF transducers and was struck with the flyer. Ne stress data obtained
shows that the aluminum flyer spalled into at least two pieces, giving a double
impact.

Experimental Arrangement

General. Figure 4-11 gives the details of the experimental assembly. A 25 mm2

PVDF gauge was mounted to the surface of a 12.7 mrn PMMA plate to measure the
induced stress in the PMMA by a 6 mm thick 6061-T6 aluminum flyer plate. The
flyer was explosively driven using a combination plane wave booster/explosive
charge assembly.

Transducer Confiuration. The PVDF element was used in the charge mode
with a 100 nF capacitor shunt as shown in Figure 3-1.

Outout Estimates. A flyer velocity of approximately 2 to 4 mm/ps was expected
from the configuration shown. This velocity was expected to result in an induced
stress loading on the front face of the PMMA of approximately 10 to 20 GPa. The
rarefaction from the back surface of the plate was expected to arrive after about 2 ps.
If the aluminum flyer plate spalled, the result would be a multiple impact of flyer
material on the PMMA, though the peak stress magnitude would remain about the
same.

Results. The record, converted to stress using Equation (2-1), is shown in
Figure 4-12. The initial slow-rise ramp is due to the air shock ahead of the flyer (the
chamber was evacuated only to about 40 microns). The double hump structure
confirms that the flyer did indeed spall. The 9.8 GPa peak stress Fives a calculated
flyer velocity of 3.1 mmi/ps. The 1.75 ps time separation between impacts suggests
that the layers were separated by less than 5.4 nun. Based on the 1.5 ps width of the
first pulse, the first layer was approximately 2 nun thick.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The PVDF stress gauge has allowed the measuremenL of shock wave response of
several materials under moderate to high stress. It can be used to measure the shock
pulse in water close to detonating explosive charges. In this stress range, greater
than 6 kbar in water, standard crystal gauges such as tourmaline and lithium
niobate cannot survive or give reliable results. For stress pulses with long rise
times, the PVDF gauge used in the charge mode is simple to use and yields accurate
results. For special applications with very, fast shock wave rise times, the PVDF can
be used in the current mode, which will give data representing the time derivative of
stress. It is the only stress gauge capable of measuring both stress and rate of change
of stress.

DISCUSSION

Chapter 4 described three experimental applications performed at NAVSWC
and introduced the results. This chapter will discuss the results in more detail.

Peak Stress Measurements

The three experiments described in Chapter 4 have given results close to the
calculated peak stress data to within 3 percent; i.e., within the accuracy of the PVDF
calibration (Equation (2-1)). The experiment measuring stress at a water/solid
interface shows that peak pressure measurements do not appear to be affected by the
presence of strain. Stretching of the gauge due to bowing of the PMMA plate occurs
after the front of the shock wave travels past the gauge. Late-time structure is
perturbed by gauge strain.

The peak stress measured in the PBXW-123 impulse experiment shows that
PVDF used in both charge mode and current mode yields well correlated results. The
general structure of the waveforms is the same. The difference in magnitudes is
probably cue to the large, asymmetric wcve cuvature, and non-steady state
conditions. Recall that the two transducers were spaced approximately 1.6 cm from
one another and that the two signals arrived 200 ns apart.

The one-dimensional flyer plate experiment yielded peak stress measurements
that agreed with hydrocode calculations.

5-1
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Structured Shock Loading

Both the water/solid interface and the flyer plate experiments demonstrate the
ability of PVDF to measure structured shock loading. In both experiments, the
charge mode transducers performed well and yielded clean data.

Strain Effects

The water/solid interface experiments were performed to address the problem of
the strain-induced output of PVDF. After the initial compressive shock; i.e., after the
peak stress loading, the radial expansion etc., of the PVDF element must perturb the
data. The PMMA plate experiment has siiown that this problem is not completely
understood.

A graphical analysis was performed to estimate the stress magnitude at the
water/PMMA interface after the arrival of the rarefaction from the back surface of
the plate. Since water and PMMA are not exactly impedance matched, and the
initial explosive shock is not flat-topped, the stress at the water/plate interface
should go to some finite value upon the arrival of the first reflection from the back
face. Subsequent "ringing" of reflections should evetitually bring the stress level to
zero. As a first order estimate, a value of around 100 to 150 MPa was determined for
stress at the interface after the first reflection.

Recall that the shot record (Figure 4-5) shows the stress at the water/plate
interface to go negative after one reflection. No ringing of reflections is apparent.
These deviations from expected one-dimensional stress-time behavior may be the
result of nonaxial strain of the gauge element. In an attempt to compensate for the
strain component, the data from the two transducers were added together. When this"corrected" voltage-time profile is converted to stress, the stress after arrival of the
first reflection was 8 MPa.

Perhaps another reason for the difference in the calculated result and the
measured result is that the PVDF output may deviate from the charge-stress
relationship (Equation (2-1)) upon unloading. The possibility of this effect was noted
in p.'evious work done at Sandia. 14

A more thorough analysis is needed to reconcile this difference between the
calculated and measured stress. First, complete modeling of the experiment is
required in order to obtain an accurate stress prediction. Second, future work will
incorporate strain gauge instrumentation for simultaneous stress/strain
measurements.

CONCLUSIONS

It has been shown that accurate peak stress measurements can be made at the
water/solid interfaces using PVDF pressure transducers. The experiments described
above have shown that, using controlled techniques, PVDF gauge circuits will yield
accurate, predictable results for peak stresses.

In these experiments more than just peak stress information was obtained. For
example, in the flyer plate experiment, the record shows a double impact from a
spalled aluminum flyer plate. The water/solid interface experiment data showed the
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stair-step relief of a shock-loaded aluminum plate. The data recorded in these
experiments demonstrate the versatility of the PVDF polymer in making high
pressure shock measurements. Calibration of PVDF in release states will provide
accuirate wave profiles in future work.

Excellent results have been obtained with both the charge mode gauge circuit
and the current mode gauge circuit. The charge mode gauge circuit used in this work
has been proven to be a means of obtaining clean data in the underwater experiments
described above. Future work will be done to evaluate current mode transducer
performance in underwater applications.

FUTURE WORK

The PVDF gauge is being packaged to measure free field stress in water close to
a detonating explosive charge. Stresses above 0.6 GPa in water will be measured to
give data on close-in shock pulses that conventional underwater crystal gauges (such
as tourmaline and lithium niobate) cannot measure. These conventional crystal
gauges do not give reliable results for stresses in water greater than about .6 GPa.
The crystal elements have a high shock impedance relative to water, so a shock
greater than .6 GPa in water induces stresses in the crystals that exceed their elastic
yield point. Also, at lower pressures, the stress data rings as shocks and reliefs
reverberate inside the crystal until the stress in the crystal reaches equilibrium with
the stress in the water. This ring-up process lengthens the response time of these
gauges. PVDF gauge elements have a shock impedance fairly close to that of water
and are thin, so shock ring-up and reverberation are not problems.

More work is needed to characterize PVDF response to strain and how to
elin.inate it from stress data. Also, investigation of the response of PVDF to
unloading is necessary.
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APPENDIX A

LOW INDUCTANCE PVDF SENSOR DESIGN

SENSOR DESIGN

The low inductance Naval Surface Warfare Center (NAVSWC) sensor design
had wide, short, triangular connections that fanned out from the central sensox area
(see Fipire A-1). A 1.5 mm space separated adjacent triangles. This design was
called the "double maltese-cross." The central active area was 5 mm in diameter, and
the PVDF film was 26 lim thick. The sensor was designed to have an inductance of
3 nH from the active area to the outside periphery. The inductance was calculated by
adapting the methods of Rosa and Gray. 1-Indeed, the measured inductance war 3

The connections to the central circle were rade by relatively narrow lines from
the triangular electrodes. The electrodes were vacuum-deposited onto the PVDF,
fir;t an approximately 25 nm of chromium, then an approximetely 100 nm layer of
gold.A-3,A4 In Figure A.1 the gold surfaces are shown in white whereas the gray
shaded regions are chromium viewed through the PVDF.

SENSOR PREPARATION

Ten sensors were prepared by Bur and RothA'3,A.4 with mean remanent
polarization of 6.00 pC/cm2 to a precision of 0.5 percent. The PVDF film was
manufactured by Rhone-Poulenc and was obtained from a selected mraster batch
which is kept -t Sandia National Laboratories by R. Graham. X-ray observations
and measurements of density," indicated that the material was biaxially oriented,
containing both nonpolar a and polar 2 crystalline phases and had a cryotallinity of
50 percent. The as-received material had a density at room temperature of
1.806 g/cm 3 . The sensors were poled b,, the Bauer polarization procedure.A^'

Bur and Roth also discovered from density and x-ray measurements that the
crystallinity remained constant during poling but with a significant conver-ion of a
phase crystallites to the polar 3 phase. They observed that each sensor required a
unique maximum poling field to achieve the same reinanent polarization. This
contributed to the Trresence of different distributions and amount~j of space charge in
each tsensor. The observed increase in the saturation polarizatioa, with increabe in
the maximum poling field, is also attributed to tha effect of space charge. This charge
resides at the surface of polar crystalb and creates a local electric field which
diminishes the effect of the applied poling field. Their attetii.pts to increase the
remanent polarization to values of 8.0 pC/cm 2 and greater were not successful
because dielectric breakdown occurred ut the edges of the electrodes before reaching
this level of polarization.
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LATER DESIGN

The new NAVSWC sensor was designed to reduce the dielectric breakdown
problems of the first design. The central area was a 5 mm diameter octagon. The
connections were 5 nm in width and comprised two crosses, one on each side of the
PVDF, intersecting aL 45°. The area of intersection of the two crosses was the
octagon. The remainig electrodes were the same triangular sectors of the earlier
design. This new design was never built.

UNDERWATER EXPERIMENT

The double maltese-cross design was tested in a series of underwater
experiments.A" The sensors were placed cloaj to the surface of a 41 mm diameter
Pentohite sphere. This sphere was a standard donor used for the NAVSWC
underwater sensitivity test. The pressure/distance relationship for the .Iest had
already been determined using streak photography and lithium niobate sensors.A.7 ,s
The sensors were suspended from a connecting ring which incorporated a double-
sided printed circuit board. The board allowed low inductance connections to be made
between the PVDF sensor, the terminating capacitor and resistor, and the cable.

The PVDF surfaces were insulated from the water with Saran wrap attached by
a smear of silicone grease to exclude air. The circuit board was protected with
silicone rubber (RTV 3145) and insulating tape.

A voltage record from one experiment is shown in Figure A-2. This record was
obtained using an integrating capacitor of 100 nF mounted directly on the sensor and
matched to a 50 (1, RG58 cable with a matching series resistor as shown previously in
Figure 3-1 of the main text.

In these preliminary experiments, no allowance was made for sensor strain
effects.
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